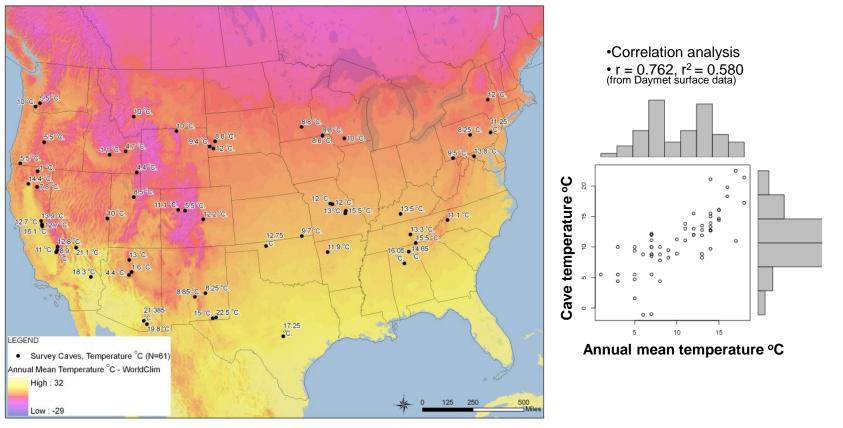


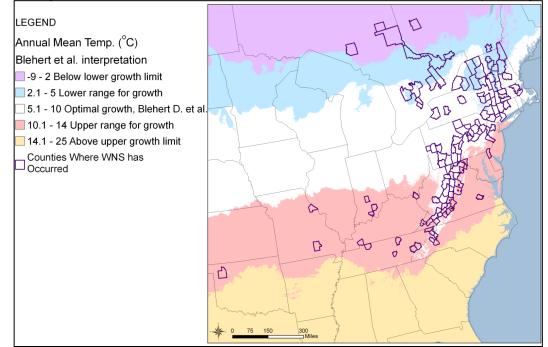
Lara M. Juliusson, Karla S. Mayne, and Anthony J. Titolo

Contractors onsite at the Bureau of Land Management, National Operations Center, Denver, CO. COR Frank Quamen

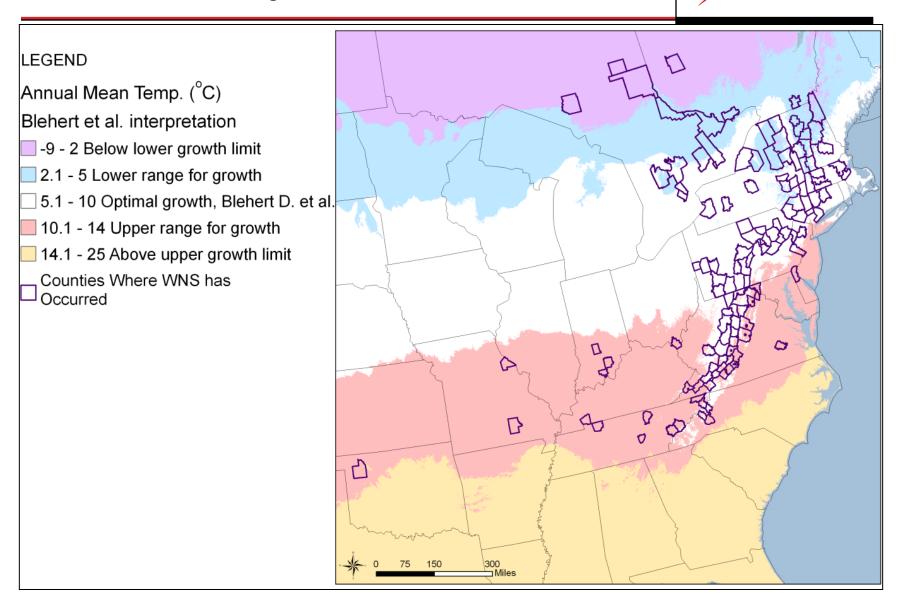
- The issue: White Nose Syndrome is spreading westward
- Land managers are planning for monitoring and response
- We asked: is there a way to suggest potential risk across the landscape for fungus development?
- Combine:
 - Cave temperature predictions, using:
 - The annual mean surface temperature rule-of-thumb
 - An annual mean temperature GIS surface
 - Geomyces destructans' thermal tolerance range evaluated using:
 - Laboratory studies
 - Prior occurrence


- Cave Temperature Prediction
 - The average annual temperature rule-of-thumb: Cave "air temperature is greatly determined by wall temperature, which is approximately equal to the mean annual temperature outside the cave." (Boga 1997),
 - Literature citations: Howarth 1983, Wigley and Brown 1976, Moore 1956

Boga, S. 1997. Caving. Stackpole, Mechanicsburg, Pennsylvania, USA.
Howarth, F.G. 1983. Ecology of Cave Arthropods. Annual Review of Entomology. 28: 365-389.
Moore, G.W., 1956. Aragonite speleothems as indicators of paleotemperature. American Journal of Science. 254: 746-753.
Wigley, T.M.L., and Brown, M.C., 1976. The physics of caves. *In: The Science of Speleology*, 329-358. Academic Press, NY.

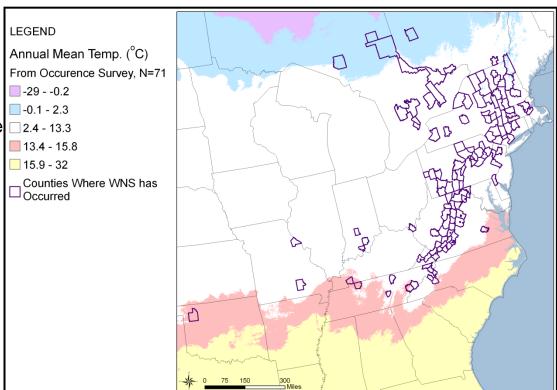

- Cave Temperature Prediction
 - Test this empirically. Does the mean annual surface temperature predict known average cave temperatures?
 - Compare:
 - Annual mean temperature GIS surface: Daymet model (18-year mean)
 - N=61 caves with locations and average temperature gathered from publications and the Internet

- Geomyces destructans' thermal tolerance ranges Lab Studies
 - Temperature is one environmental variable affecting fungus growth
 - Gargas et al. (2009) first to culture G. destructans in the lab
 - Blehert et al. (2009) interpret these lab experiments,
 - "isolates were initially cultured at 3 °C, grew optimally between 5 ° and 10 °C, but grew marginally above 15 °C. The upper growth limit was approximately 20 °C."


Their interpretation coincides with WNS occurrence in the east, except in Canada

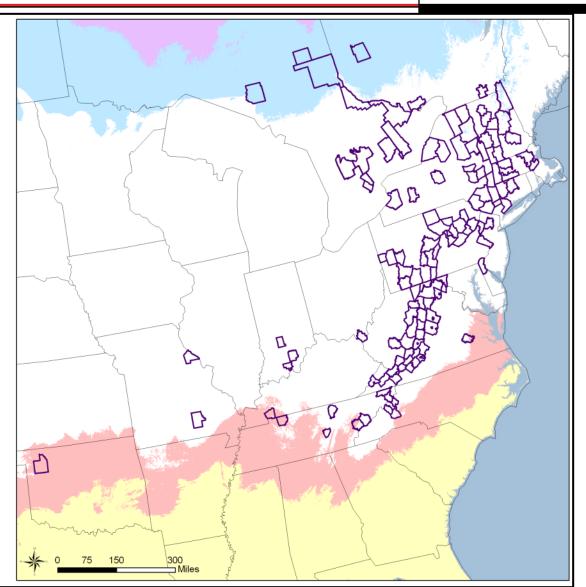
Gargas, A., M.T. Trest, M. Christensen, T.J. Volk, and D.S. Blehert. 2009. *Geomyces destructans* sp. nov. associated with bat white-nose syndrome. Mycotaxon. 08:147–154.

Blehert, D.S., A.C. Hicks, M. Behr, C.U. Meteyer, B.M. Berlowski-Zier, E.L. Buckles, J.T.H. Coleman, S.R. Darling, A. Gargas, R. Niver, J.C. Okoniewski, R.J. Rudd, and W.B. Stone. 2009. Bat white-nose syndrome: an emerging fungal pathogen? Science. 323:227.

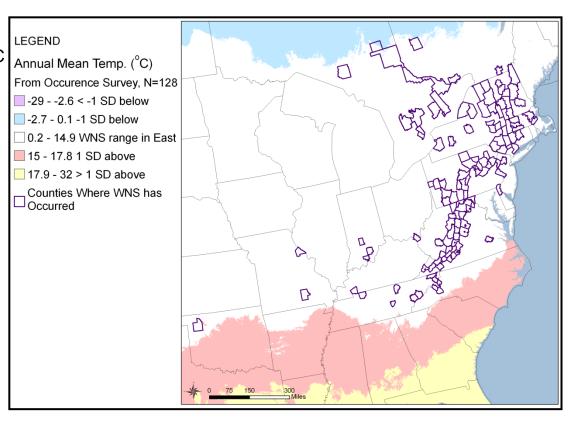


- Geomyces destructans' thermal tolerance ranges –Prior Occurrence
 - Extract annual mean temperature in each county where WNS has occurred
 - Analyze results statistically
 - Counties, N=71 (collected from the Internet, Fall, 2010)
 - Mean = 8.04 ° C
 - Range = 2.4 ° C to 13.3 ° C
 - Standard deviation = 2.5 ° C
 - +1 SD = 13.4 15.8 ° C
 - -1 SD = -0.1 2.3 ° C
 - Results on a new map
 - Canadian cases within SD range

 □2.4 13.3

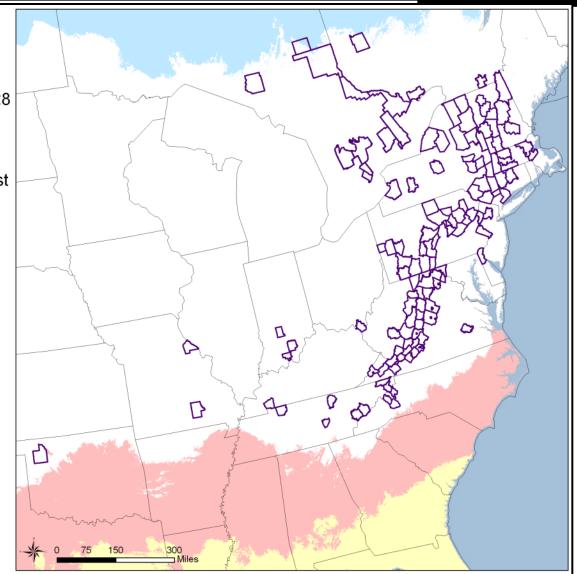


Annual Mean Temp. (°C)


From Occurence Survey, N=71

- -29 -0.2
- -0.1 2.3
- 2.4 13.3
- 13.4 15.8
- 15.9 32
- Counties Where WNS has Occurred

- Geomyces destructans' thermal tolerance ranges Prior Occurrence
 - Recent county additions
 - Counties, N=128 (collected from the Internet, Spring, 2011)
 - Mean = 7.87 ° C
 - Range = 0.2 ° C to 14.9 ° C
 - Standard deviation = 2.9 ° C
 - +1 SD = 15.0 17.8 ° C
 - -1 SD = -2.7 0.1 ° C

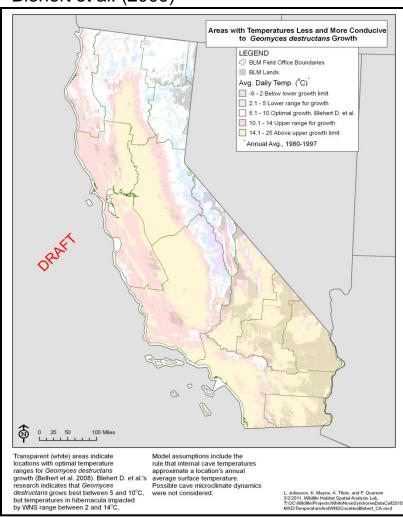


Annual Mean Temp. (°C)

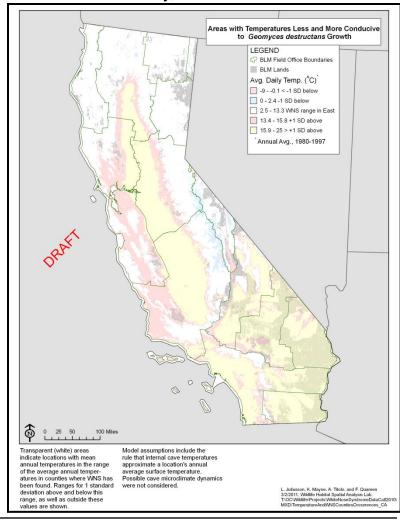
From Occurence Survey, N=128

- -29 -2.6 < -1 SD below
- -2.7 0.1 -1 SD below
- ☐ 0.2 14.9 WNS range in East
- 15 17.8 1 SD above
- 17.9 32 > 1 SD above
 - Counties Where WNS has

☐ Occurred



- Model Weaknesses and Assumptions
 - Cave temperature prediction Annual Mean Temperature rule-of-thumb
 - Correlation Analysis: How reliable are the cave average temperature and annual mean surface temp. data?
 - Cave configuration and microclimate: Unique by cave, unable to be modeled
 - Geothermal gradient: May be able to be modeled as an additional variable
 - Human alterations
 - Water presence
 - Annual mean temperature surface (1950-2000 annual mean): climate change effects?
 - Annual mean temperature surface: Unit of measurement 1 ° C
 - Geomyces destructans' thermal tolerance and growth
 - Other environmental variables influence fungal growth: humidity, pH
 - Differences seen in laboratory experiments versus environmental conditions



California Risk Scenarios: Maps

Blehert et al. (2009)

Occurrence survey, N=71

California Risk Scenarios: Tabular

Model Scenarios: Acres of Land in California*											
Blehert et al.				Occurrence Survey							
Category	Acres	Percent		Category	Acres	Percent					
Below lower growth limit	1,795,264	2.0%		Less than -1 SD below occurrence range	180,880	0.2%					
Lower range for growth	4,688,818	5.3%		-1 SD below occurrence range	1,614,383	1.8%					
Optimal growth	16,953,842	19.1%	51.4%	Range where WNS has occurred	37,499,285	42.2%	62.1%				
Upper range for growth	24,071,610	27.1%		+1 SD above occurrence range	16,120,772	18.1%					
Above upper growth limit	41,438,166	46.6%		More than +1 above occurrence range	33,532,380	37.7%					

Model Scenario: Acres on BLM Managed Lands in California**											
Blehert et al.				Occurrence Survey							
Category	Acres	Percent		Category	Acres	Percent					
Below lower growth limit	4,800	0.0%		Less than -1 SD below occurrence range	0	0.0%					
Lower range for growth	231,398	2.2%		-1 SD below occurrence range	4,800	0.0%					
Optimal growth	1,325,367	12.5%	36.6%	Range where WNS has occurred	3,125,200	29.5%	43.3%				
Upper range for growth	2,319,544	21.9%		+1 SD above occurrence range	1,446,534	13.7%					
Above upper growth limit	6,697,272	63.3%		More than +1 above occurrence range	6,001,847	56.7%					

^{*} Based on GIS layers from ESRI and Daymet. Inconsistencies may exist with official surveyed acreages.

^{**} Based on GIS layers from BLM SMA, 11/2010 and Daymet. Inconsistencies may exist with official surveyed acreages.

- Future Directions
 - Alaska-specific map
 - Incorporate geothermal gradient
 - Evaluate model with WNS westward movement
 - Evaluate and incorporate other research (Flory, 2010 thesis)
- Questions?

Flory, A.R., 2010. Thesis: Potential Environmental Factors Associated with the Newly Emerging Bat White-Nose Syndrome in the Northeastern United States: An Exploratory Modeling Approach and Case-Control Study. Colorado State University.